Main conclusions

On this page, I want to give a brief overview of the main outcomes of our research. For the full publication list (and all the blogposts associated with them), visit my publications-page. 

Kärkevagge

Mountain roads

  • Mountain roads affect species composition, with higher species richness and a very different community in the roadsides than in the natural vegetation (Lembrechts et al. (2014). PLoS ONE).
  • These mountain roads thus have inevitable effects on species ranges, with lowland (native and non-native) species expanding their ranges on average 600 m upward in the roadside, and alpine species 200 m downwards (Lembrechts et al. (2017). Ecography).

Plant invasion in mountain plant communities

  • Alpine plant communities in the subarctic are more invasible for non-native species than lowland communities (Lembrechts et al. (2014). PLoS ONE).
  • Along the whole elevation gradient, invasion is mostly driven by disturbance, i.e. removal of the vegetation (Lembrechts et al. (2016). PNAS, Lembrechts et al. (2017b). Ecography).
  • Due to small-scale variation in biotic interactions and microclimate within such disturbances, size of a vegetation gap and location within the gap do matter for the success of the invaders (Lembrechts et al. (2015) AoB Plants).
  • Despite the higher invasibility of alpine areas, the highest elevations are so far relatively free from non-native plants (Alexander et al. (2016). Alpine Botany).
  • Nonetheless, in total nearly 200 non-native plant species have been recorded from alpine environments around the world (Alexander et al. (2016). Alpine Botany).
  • Surprisingly, most non-natives in alpine environments are warm-adapted species (Alexander et al. (2016). Alpine Botany).
  • Even though they like it warm, they perform best in disturbed sites at intermediate elevations. There, it is not yet too cold, but the native vegetation grows too slow to provide much resistance against invasion (Lembrechts et al. (2016). PNAS).
  • These warm-adapted species can tactically make use of warm spots in the mountains as stepping stones towards higher elevations, especially with a bit of human help (disturbance, nutrient addition, transportation of seeds (Lembrechts et al. (2017b). Ecography).
  • All of this suggest an increasing risk for plant invasion in cold ecosystems in a future that will combine a warming climate with persistent anthropogenic pressure.Buttercup is the earliest in spring, here

Microclimate

  • The mismatch between how we usually express climate (cf. coarse-grained free-air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in Species Distribution Models.
  • We summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling in a review (Lembrechts et al. (2018). Ecography).
  • We propose an integrated framework to measure microclimate for use in SDMs, using a selection of appropriately-placed sensors in combination with both detailed measurements of the habitat 3D structure, and long-term records of free-air conditions from weather stations (Lembrechts et al. (2018). Ecography).

43035841140_9efb21663d_o

Belowground processes

  • Litter decomposition is driven more by climate than by species, site or origin of the litter. How much litter remains – and how much carbon and nitrogen within the litter – can thus be predicted best by precipitation, soil water content and air temperature (Portillo-Estrada et al. (2015). Biogeosciences).

Biodiversity experiments

  • We came up with a fast and easy alternative to resource-intensive experiments to explore the importance of species evenness for ecosystem functioning, by applying a little trick to existing species richness-ecosystem functioning experiments (Lembrechts et al. (2017). Oikos).

Eriophorum heads

 

10 Responses to Main conclusions

  1. Pingback: Profiling the bad boys | On top of the world

  2. Pingback: An attractive straight line | On top of the world

  3. Pingback: A line-shaped ecosystem | On top of the world

  4. Pingback: Ground-breaking | On top of the world

  5. Pingback: Alien impact | On top of the world

  6. Pingback: Seeds! | On top of the world

  7. Pingback: Seeds! | On top of the world

  8. Pingback: Please do not disturb | On top of the world

  9. Pingback: Waarom bergwandelaars best hun zolen poetsen › On Top of the World

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s